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We propose a method for mapping a spatially discrete problem, stemming from the spatial discretization of
a parabolic or hyperbolic partial differential equation of gradient type, to a heterogeneous one with certain
comparable dynamical features pertaining, in particular, to coherent structures. We focus the analysis on a
(111)-dimensionalf4 model and confirm the theoretical predictions numerically. We also discuss possible
generalizations of the method and the ensuing qualitative analogies between heterogeneous and discrete sys-
tems and their dynamics.
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I. INTRODUCTION

In the past two decades, the effects of discreteness in
waves of parabolic and hyperbolic nonlinear partial differe
tial equations~PDE’s! have been shown to be important in
variety of physical settings. From the behavior of calciu
waves in living cells@1# to the discontinuous propagation o
action potentials in the heart@2# or chains of neurons@3# and
from chains of chemical reactors@4# or arrays of Josephso
junctions @5,6# to optical waveguides@7#, dislocations@8#,
and the DNA double strand@9#, the relevant models of physi
cal reality are inherently discrete. This realization has led
the acknowledgment of discreteness as a factor that can
dramatically modify the continuum picture and enrich
phenomenology with effects such as resonant energy tran
to extended waves@10#, braking@11#, and eventual failure of
propagation@12# of coherent structures.

An alternative factor that can change the homogene
continuum picture is the presence of heterogeneities i
genuinely continuous medium@13#. Heterogeneity is also
relevant in a variety of physical settings ranging from t
behavior of chemical reactions on composite catalyst s
faces @14,15# to the diffusion of flame fronts@13# or the
migration of populations in population dynamics@16#.

Our aim in this work is to show that these two types
variation of the continuum behavior can be related to e
other.

The existence and motion of coherent structures con
tutes the backbone of spatiotemporal pattern formation
dynamics in all three types~homogeneous continuum, dis
crete, heterogeneous continuum! of systems. We intend to
demonstrate that a discrete problem derived from the ‘‘na
ral’’ semidiscretization of a parabolic reaction-diffusio
~RD! or hyperbolic nonlinear wave PDE of gradient type c
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be mapped into a heterogeneous continuum problem w
comparable coherent structure dynamic features. In a se
this mapping is not very surprising: one of the main featu
of discrete systems which is, at least partially, responsible
the new phenomena observed therein, is the breaking
translational invariance. This also occurs in heterogene
systems. The way in which this statement is translated
mathematical terms and in which it affects the behavior
the coherent structures will become evident later in this
position. In spatially discrete systems, the discrete inte
translational shift invariance that results from the breakup
translational invariance prompts one to think that it could
matched by a heterogeneous medium with a natural perio
variation due to heterogeneity equal to the intersite dista
~the lattice spacing!. Even though our method will be applie
to systems of gradient type and hence will not be comple
general, we will present below an extended discussion of
more general aspects of the analogy between heterogen
and discrete systems.

We present our results as follows. In Sec. II, we give t
general setup of the models of interest to this study. In S
III, we will present a methodology of how to ‘‘construct,’
given a discrete system of gradient type, a correspond
heterogeneous system; the correspondence, based on re
tive coherent structure dynamics, will be discussed. T
methodology will be illustrated in the specific example of
f4, (111)-dimensional field theory and will subsequent
be numerically tested. Section IV presents an extended
cussion of the analogies between heterogeneous and dis
systems that goes beyond our particular method. In Sec
we analyze the relevance and usefulness of a transforma
that maps a discrete system to a heterogeneous one
number of physical problems of recent interest. Finally,
Sec. VI, we summarize our findings and conclude.

II. GENERAL SETUP

The mathematical models of interest to this study will
of the form
:

©2001 The American Physical Society24-1
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$ut ,utt%52
dV

du
~1!

with a potential energy functionalV@u#,

V@u#5E dxS F~u!1
ux

2

2 D . ~2!

Equation~1! with one temporal derivative corresponds to
scalar equation of the RD type, while with two it represe
a nonlinear Klein-Gordon wave equation. We will use equ
tions of this form for illustration purposes, but we shou
note that the methodology can naturally be generalized
any parabolic or hyperbolic~also possibly vector! system of
gradient type. The gradient nature of the system, expres
through the form of potential energy given by Eq.~2!, is
quite crucial to the considerations that follow. Note that su
a structure will generically be present for Hamiltonian sy
tems as well as for scalar RD equations, but not necess
so, for instance, for systems of dissipative PDE’s.

The equation of motion for~1!, using~2!, reads

$ut ,utt%5 f ~u!1uxx ~3!

with f (u)52F8(u). The corresponding heterogeneo
problem of Eq.~3! is

$ut ,utt%5 f „u,b~x!…1@a~x!ux#x ~4!

with at least one ofa(x),b(x) explicitly dependent on the
spatial variablex.

The discrete counterpart problem has a potential ene
functional

Vd5(
n

~un112un!2

2h2
1F~un! ~5!

for a lattice of spacingh, i.e., un5u(x5nh).

III. TRANSFORMATION OF A DISCRETE INTO A
HETEROGENEOUS SYSTEM

Suppose that we have a discrete system with lattice s
ing h and we calculate its potential energyVd . This potential
energy determines, among other things, the existence
motion of coherent structures for the model. If we wish
approximate the discrete system’s dynamic behavior and
particular, the average shape and dynamics of its cohe
structures with a heterogeneous system of, say, variable
fusivity a(x;h), we can require that the two systems have
same energy:

E dxS a~x;h!
ux

2

2
1V~u! D 5Vd~h!. ~6!

This, however, givenu(x), can be treated as an inverse pro
lem for a(x;h). In particular, if we use anAnsatzsolution—
which below will be a coherent structureu(x) such as a
05662
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constant shape front—*V(u)dx5p is just a number or, at
most, a function ofh and hence the problem can be tran
lated into

E dxa~x;h!s~x!5E~h!5Vd2p. ~7!

E(h) is now explicitly known, and so iss(x)5ux
2/2 upon

substitution of the chosenAnsatz, and the inverse problem
needs to be solved to determinea(x;h).

We should highlight at the outset that there are two lev
of approximation in this approach.

~1! The first approximation lies in the choice of theAn-
satz. Since we concentrate on the nature and dynamics
coherent structures, we will use as ourAnsatzthe uniform
continuum problem coherent structure solution, in order
illustrate the method. More sophisticatedAnsätzecan also be
used@12#. A more refined methodology would entail findin
the exact discrete solution, and substituting it in the expr
sion for the discrete energy; and also appropriately correc
the coherent structure and its asymptotic tails before ins
ing it in the continuum left-hand side~LHS! of Eq. ~6!. How-
ever, since the leading order effects can be captured b
homogeneous continuum problem coherent structure, in
approach we will, for illustration purposes, implement on
the simplest possibleAnsatz. It should be noted once agai
that it will be implicitly assumed in the exposition that w
are interested in the coherent structure dynamics of the m
els under study.

~2! The second ‘‘approximation’’ lies in the fact that th
behavior of the constructed system shouldnot be expected to
be in detail the same as the one of the continuum. Inste
one should expect only the corresponding coherent struct
to be close, as sets, in a meaningful norm, and the nature
time scales of their dynamics to be close to each other. O
thus expects only ‘‘coarse,’’ or ‘‘average,’’ properties of th
two systems under study to match.

As is well known@17#, discreteness introduces a potent
energy barrier in which the coherent structure can be con
ered as a particle at the mean field level. The aim of t
exercise is, then, to suitably picka(x;h) so that the
~quasi!harmonic modulation of exponentially small width a
imposed by the ‘‘just-right’’ heterogeneity is the same as
one imposed by discreteness. To solve this problem, we F
rier decomposea(x;h),

a~x;h!5( am~h!expS impx

h D , ~8!

substitute theAnsatzfor u(x), and solve the ensuing equa
tions for the Fourier componentsam(h).

To illustrate the methodology, we pick as a specific e
ample of a (111)-dimensional field theoretic model thef4

problem; the discrete and the heterogeneous versions
compared to each other with the help of the homogene
continuum problem as a reference point. The equation
motion reads

$ut ,utt%5uxx12~u2u3!. ~9!
4-2
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The continuum potential energy is

Vc5E dxS ux
2

2
1F~u! D , ~10!

whereF(u)5(u221)2/2, while the discrete potential energ
is

Vd5(
n

S ~un112un!2

2h2
1F~un!D , ~11!

and the heterogeneous potential energy we try to match
it is given by

Vhet5E dxS a~x;h!
ux

2

2
1F~u! D . ~12!

As per our remarks above, for smallh, we will use in both
perturbed problems the continuum frontAnsatz u(x)
5tanh(x). Setting Eq.~12! equal to Eq.~10!, we obtain

E dxa~x;h!
1

2 cosh4~x!
1E F„tanh~x!…dx

5h(
n

S $tanh@~n11!h#2tanh~nh!%2

2h2
1F„tanh~nh!…D .

~13!

Notice the h factor in front of the sum, placed there fo
convenience. We now use the Poisson summation form
~see, e.g.,@17,18#!

(
n52`

`

f ~nh!h5E
2`

`

dx f~x!F112(
s51

`

cosS 2psx

h D G
~14!

to convert the sums into integrals. We thus have

E dxa~x;h!
1

2 cosh4~x!
1E F„tanh~x!…dx

5E dxS @ tanh~x1h!2tanh~x!#2

2h2
1F„tanh~x!…D

3H 11(
s51

` FcosS 2psx

h D G J . ~15!

Hence, after some simplification,
05662
th
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E dxa~x;h!
1

cosh4~x!
5E dx

@ tanh~x1h!2tanh~x!#2

2h2

1S @ tanh~x1h!2tanh~x!#2

2h2

1F„tanh~x!…D (
s51

` FcosS 2psx

h D G .
~16!

We now expand

a~x;h!5a01 (
m52`,mPN*

`

am~h!expS ipmx

h D , ~17!

keeping, in this case, only the cosine terms, having in m
to match the Poisson formula coefficients. However, as w
be clear below, this is not necessary. Performing the integ
of the left- and the right-hand sides, we can equate the ze
order terms~the ones independent ofm,s) to obtain

a05
3@h coth~h!21#

h2
. ~18!

Notice that the correct limit is retrieved from the heterog
neous model forh→0. Equating the remaining terms, w
have

(
m51

`

am

~p2m!~h21p2m2/4!

3h3sinh~p2m/4h!cosh2~p2m/4h!

5(
s51

` F ~2p2s!~h21p2s2!

3h3sinh~p2s/2h!cosh2~p2s/2h!

2
4p2s

h3
expS 2

p2s

h D G . ~19!

Equation~19! is a key result for our methodology. It illus
trates how the Fourier components of the heterogeneity h
to be chosen in order for it to match the average effects
discreteness.

Some remarks are in order here.
~1! One could equilibrate the series of the LHS and t

RHS of Eq.~19! term by term as is done when one has
orthogonal—Fourier components, i.e., them5 i with the s
5 i terms of the series. We notice that in this case this is
necessary; one can just use a single term of the LHS serie
compensate for the effects of the sum of terms in the R
exactly, because the matching is performed at the ave
level. In particular, for simplicity, we use only them51
term, choosing
a15
3h3sinh~p2/4h!cosh2~p2/4h!

~p2!~h21p2/4!
(
s51

` F ~2p2s!~h21p2s2!

3h3sinh~p2s/2h!cosh2~p2s/2h!
2

4p2s

h3
expS 2

p2s

h D G . ~20!
4-3
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FIG. 1. The dynamical time evolution of th
front solution center toward its equilibrium pos
tion in the discrete medium~top panels! as well
as the ~‘‘equivalent’’! heterogeneous medium
~bottom panels!. The left panel shows, in both
cases, the time evolution of the center (h51)
whereas the right panels demonstrate in a se
logarithmic scale the exponential nature of th
convergence toward the equilibrium static min
mum potential energy configuration~see text
also!.
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~2! As the careful reader will have noted, in the expans
for the heterogeneity we have used wave numbersk5k8/2
wherek8 are the corresponding wave numbers ‘‘of discre
ness’’ as imposed by the Poisson formula. In general, at
level of matching we perform, the above choice is not n
essary; however, a choice ofk,k8 will be needed since for
k5k8 the inverse of the first fraction in the RHS of Eq.~20!
goes to 0 faster than the second term in the series summ
ash→0. Hence, the limit becomes ill defined. For the cho
made here, an interval of 2h of the heterogeneous mediu
simply corresponds to a lattice spacing distance for the
crete medium.

~3! It is also worth noting that, modulo the above me
tioned difference, the terms in the series of the LHS are
same as the first terms of the series of the RHS in Eq.~19!.
Retracing this coincidence back to Eq.~13!, we can observe
that it is due to the Bogomol’nyi bound~see, e.g.,@19#!. The
latter necessitates, in models similar to the one studied
that the static solution saturates the lower bound of the c
tinuum potential energy, rendering the coupling, i.e., the o
coming from the first term in the integral of Eq.~6!, and the
substrate, i.e., stemming from the second term in the inte
of Eq. ~6!, potential energies equal.

We now proceed to examine numerically the results
our approach. If we used a trialAnsatzof the form tanh(x
2x0) to map the potential energy landscape as a function
the variablex0, we could easily@18,20# generalize the resul
of Eq. ~19! to see that a cos(2psx0 /h) term would be present
giving rise to a~roughly, since the higher order terms a
exponentially weaker with respect tos51) harmonic poten-
tial which for the discrete problem has minima atx0
5nh/2,nPN, and maxima atx05nh. This picture for the
heterogeneous problem would be translated to a harm
;cos(px0 /h) potential with minima at x05(2n11)h
~‘‘black’’ sites! and maxima atx052nh ~‘‘white’’ sites!. In
@18,20#, a constant external field was used to washboard
harmonic potential. As a result of the tilting, the maxima a
minima can collide and disappear for a finite value of t
05662
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field in saddle-node bifurcations that will result in the a
pearance of burst waves. For such problems one would
pect the traveling of the coherent structures to match
tween discrete and heterogeneous problems. However, in
case, the presence of static solutions renders them stabl
the dynamics for the Hamiltonian as well as for th
dissipative—as the maximum principle dictates@13#—
systems. Hence, in our numerical computations, we obse
the relaxation to the prescribed steady states of a pertu
original front like solution; the results for the dissipative sy
tem are shown here.

In Fig. 1, we initialize the discrete as well as the corr
sponding heterogeneous system for various values
h—specifically here the case ofh51 is shown—with a per-
turbed front withx0549.75. As we expect the discrete sy
tem relaxes to the equilibrium position ofx0549.5, while the
heterogeneous system relaxes to the ‘‘black’’ site withx0
549. Notice that the picture reports the position of t
front’s center following the method used in@21#. The time
evolution of the relaxation to equilibrium follows a clear
exponential decay in each case, according to

dx0

dt
52

dVe f f~x0!

dx0
'2v~h!x0 . ~21!

This ‘‘effective particle evolution’’ equation can be extracte
by using theAnsatzwith x0(t) for the potential energy and
consideringx0 as a collective coordinate. The correspondi
relaxation ratev(h) can be theoretically predicted by ex
panding cos(2psx0 /h) or cos(px0 /h) close to the equilibrium
position. It can thus be derived from Eq.~19! that h5v
~where v is the associated rate of decay! will behave as
exp(2p2/h), with exponentially small corrections. In fac
from the semilogarithmic plot ofh5v as a function ofh21 in
Fig. 2, we deduce that the solid curve corresponding to
discrete medium is within 4.01% of the theoretical predicti
(2p2) for the slope, while the dashed line of the heterog
neous medium is within 2% of the same prediction. Not
4-4
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FIG. 2. The behavior of the~appropriately
rescaled! rate v of the approach@according to
exp(2vt)# to equilibrium is shown in a semiloga
rithmic plot as a function ofh21. The solid line is
the best fit to the data for the discrete syste
~circles! while the dashed line is that for the co
responding heterogeneous system~crosses!. See
text also.
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that the only slightly higher deviation of the discrete proble
is more than well justified as all terms withs>2 in Eq. ~19!
have, in essence, been neglected in such a prediction.
very good agreement of this ‘‘average’’ picture with the th
oretical result indicates the validity of the description s
forth for the effective correspondence of discrete and app
priately ‘‘crafted’’ heterogeneous systems.

IV. TOWARD A GENERAL TRANSFORMATION OF
DISCRETE TO HETEROGENEOUS SYSTEMS

In the previous section we saw that a particular discr
system could be mapped into a heterogeneous one with c
parable coherent structure and coherent structure relaxa
features. The mapping was based on matching the pote
energies of the particular discrete system and of the co
sponding heterogeneous one. We will now show that,
mally, the potential energy ofany discrete problem of the
type mentioned in Sec. II can be mapped into the poten
energy of a heterogeneous continuum system.

The basic tool for the exposition will be once again t
Poisson summation formula~14!, a useful special case resu
of which is

(
n52`

`

exp~ ian!52p (
m52`

`

d~a22pm!. ~22!

If we now useVd from Eq. ~5! and write it according to Eq
~14!, we obtain

Vd5
Vsc

h
1

2

h (
s51

` E
2`

` S @u~x1h!2u~x!#2

2h2
1F~x!D

3cosS 2psx

h D . ~23!
05662
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In what follows, for simplicity, we will rescaleVd in Eq. ~23!
by a factor ofh as we are always allowed to.Vsc—the sub-
script indicating semicontinuum for reasons that will be o
vious below—in the above equation reads

Vsc5E dxS @u~x1h!2u~x!#2

2h2
1F~x!D

'V@u#1h2E dxS uxx
2

4
1

uxuxxx

3 D ~24!

and yields the continuum potential energy functional up
O(h2); notice that the functional derivative of theO(h2)
term yields theO(h2) correction (5h2uxxxx/12) in the Tay-
lor expansion of the second order difference@u(x1h)
1u(x2h)22u(x)#/h2'uxx1h2uxxxx/121O(h4).

For the second part of the RHS of Eq.~23!, we will use
the semicontinuum approximation

2(
s51

` E
2`

` S @u~x1h!2u~x!#2

2h2
1F~x!D cosS 2psx

h D
'2(

s51

` E
2`

` S ux
2

2
1F~x! D cosS 2psx

h D , ~25!

since as we will show the continuum part of Eq.~25! is
O„C(h)exp(2sp2/h)… and hence the rest will beO(h2)
smaller and can consequently be ignored, as we are in
ested in the leading order, power-law as well as exponen
effects. We should note that the above estimate of expon
tial smallness holds true for the dynamics of coherent str
tures, which are implicitly of interest in this work, as ha
been highlighted also in the previous section.

Combining the results of Eqs.~24! and~25!, we have that
the potential energy of the discrete system is
4-5
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Vd'E
2`

`

D~x!S ux
2

2
1F~x! Ddx1h2E dxS uxx

2

4
1

uxuxxx

3 D
~26!

where the corrections areO(h4) for the power-law terms and
O„h21aexp(2sp2/h)… @wherea is of the order ofC(h)# for
the exponentially small terms.D(x)5112(s cos(2psx/h) is
the variable diffusivity of the corresponding heterogeneo
problem.

We will now present the argument about ‘‘exponent
smallness’’ of the ‘‘effective’’ contributions of the variabl
diffusivity. Returning to the second term of the RHS of E
~23!, we observe that the integrals within this express
contain rapidly oscillating integrands. Using the method
residues for integrals of the formf (z)exp(iaz) @22#, we can
see that they are equal to Re@2p iResz→zpole

f (z)exp(iaz)#
with a52ps/h. Typically, for the patterns of interest in suc
problems, such as kinks in the sine-Gordon equationu(x)
54 tan21exp(x), or thef4 modelu(x)5tanh(x), and/or for
pulses of the nonlinear Schro¨dinger equation u(x)
51/cosh(x), the first pole of the coherent structure lies atx
5 ip/2. Generically, f (z) will have exponential tails and
analytic behavior on the real axis but will have poles ax
5 iy ,yPR* , on the imaginary axis. Suppose, for simplicit
that the pole is atx5 ip/2. Then,

Vd5Vsc1C~h!expS 2
p2s

h D ~27!

with C(h)'Re@2p iResz5 ip/2f (z)#.
We have thus shown that the potential energy of any

crete system of the form of Eq.~1! can be approximated u
to controllable higher order terms by that of an appropriat
chosen heterogeneous system where both the coupling
the reaction terms are modulated by a special form of h
erogeneity which on the average mirrors the exponenti
small effects of discreteness, and a quartic derivative wh
mirrors its power-law effects. The higher order power-la
effects can be captured by the Taylor series

(
j 51

`
2h2 j 22

~2 j !!

d2 ju

dx2 j
. ~28!

Some remarks are now in order.
~1! Since the effects of the variable part of the ‘‘diffusio

coefficient’’ D(x) are, on the ‘‘average’’ in the sense give
above,O„exp(2p2s/h)…, it is worth noting that we will not
need more than the first few terms in the series forD(x).

~2! Exponentially small effects are generically observa
in discrete systems, mirroring the exponentially small sp
ting of the heteroclinic or homoclinic orbits introduced b
discreteness@23#.

~3! Also, generically at the functional level, i.e., on th
average, exponentially small phenomena will be present
any heterogeneous problem because of the nature of the
05662
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tegrals of the form*exp(iaz)f(z)dz, whenf is reasonably well
behaved on the real axis as is expected to be the case fo
problems of interest here. Due to the residue theorem,
nerically such integrands will give rise to transcendental c
rections in observable quantities such as, e.g., the cohe
structure speed. As a particular form of heterogeneity
posed essentially by the Poisson formula and illustra
through Eq.~26!, discreteness gives rise to an almost h
monic potential energy barrier of exponentially small widt
which explains the exponentially small separation of the
trema of such a barrier observed in discrete syste
@11,23,18#.

~4! In the continuum limit, theO(h2) terms naturally dis-
appear ash→0, but also the limit of the integrals with th
rapidly oscillating integrands is well defined according to t
Riemann-Lebesgue lemma: whenx→` and if * f (z)dz ex-
ists, the limit of the definite integral*@ f (z)exp(ixz)#dz is
always equal to zero.

~5! It should also be noted that, even though we have tr
to keep the calculations as general as possible, it has b
implicit and important in some points, such as the expon
tial smallness estimates, that we are interested in the dyn
ics of patterns or coherent structures in discrete and/or
erogeneous environments.

~6! Finally, a more general remark: The formal proof
the equivalence of the discrete potential energy with an
propriately chosen heterogeneous one predisposes us t
cept the similarity of the relaxational or conservative dyna
ics driven by such a potential energy functiona
Furthermore, the methodology of Sec. III and its succes
numerical tests add to that belief. However, a note of cau
is in order. The method of Sec. III is approximate. Were
to formally transform the dynamics, i.e., the time evoluti
of the discrete system, into that ones of a heterogene
continuum system, a process similar to that carried out
Vd should also be performed for the LHS of Eq.~1!. This
would result in the presence of aD(x) in the LHS, i.e.,D(x)
would also multiply the temporal derivatives of the LHS
This means that the discrete system can be thought of
continuum system where, by construction, in all of the ter
of both LHS and RHS infinite weight has been placed on
lattice sitesx5nh, as opposed to 0 weight on the rest of t
line. This interpretation follows directly from the functiona
form of D(x) and Eq.~22!. Hence, this is not a conventiona
heterogeneous system. However, the analogy of the pote
energies had as its scope to reveal the nature of the dom
power law as well as exponentially small terms in the fun
tional; it also aimed to justify,a posteriori, the success of
methods such as the one used in the previous section an
illustrate the similarities between heterogeneity and discr
ness.

V. RELEVANCE AND USEFULNESS OF A DISCRETE
TO HETEROGENEOUS TRANSFORMATION

In the previous sections, we have attempted to constru
transformation from a discrete to a heterogeneous sys
4-6
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that has the same ‘‘average’’ coherent structure dynam
We have also attempted to give the general analogies
tween discrete and heterogeneous systems. One may
rally, however, enquire about the usefulness of such a tr
formation in relevant physical applications.

It is clear that the gain in using such a mapping is no
numerical one. In particular, to resolve a continuum but h
erogeneous system, a finer computational grid is requ
that takes into account the details of the periodic functio
a(x;h),b(x;h) at a scale finer thanh. In a discrete system
the periodicity is ‘‘encoded’’ in the integer shift translation
invariance and hence no length scales finer thanh need to be
resolved.

On the other hand, however, there can be a signific
gain in tackling the dynamics of a heterogeneous sys
rather than that of a discrete one by means of analyt
calculations. In particular, the mathematical techniques
are much more well developed for heterogeneous rather
discrete systems include among others homogeniza
@24,13# which converts the heterogeneous system into a
mogeneous one with appropriately ‘‘averaged’’ coefficien
and hence whose dynamics are much simpler to stu
asymptotic expansions@12,25# and multiscale analysis
@12,13# which can be used to determine the effective sp
of coherent structures in heterogeneous media and hence
dict, by comparing it to zero, approximately when propag
tion will fail in heterogeneous and hence also in discr
media; use of the degree theory approach of@26# and the
continuation method of@27# in proving the existence an
constructing coherent structure solutions of the hetero
neous periodic media@27,28# ~see also@13#!; use of general
operator theoretic notions@29# to address the asymptotic st
bility of fronts or pulses in periodic media@13#.

Notice that many of the above references and hence
corresponding techniques have been developed quite
cently and thus it would be of considerable interest to use
mapping proposed here to ‘‘translate’’ our understanding
the heterogeneous systems’ dynamics into an understan
of discrete systems proper. This program can be carried
for the many applications of discrete systems mentioned
the Introduction and can potentially impact our understa
ing of areas as important and diverse as heart dynam
chemical reactions, optical fibers, dislocations, or neuro
activity.

Another direction in which this mapping may be useful
the experimental one. Very recently, it has been appreci
that many systems amenable to experiments and as div
as optical lattices in Bose-Einstein condensates~BEC’s!
@30#, quadratic nonlinear photonic crystals@31#, calcium
waves in theT tubules of cardiac cells@12#, or chemical
reactions in heterogeneous catalytic surfaces@32# are hetero-
geneous systems that through the appropriate transform
can be mapped into discrete systems. In particular, s
mappings of heterogeneous to discrete systems, i.e., th
verse of the transformation performed here, involve either
amplitude expansion of the field@31# or a tight-binding ap-
proximation @30#, both of which result in differential-
difference equations for the discrete amplitude coefficient
the expansion. It should be noted that, at least in some o
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experiments, such as the optical lattices in BEC’s where
can modify the properties of the lasers forming the lattice,
in chemical reactions where one can construct differ
masks with different percentages of each catalyst or w
various different catalysts, the properties of the heterogen
are, in a sense, ‘‘tunable.’’ The realization that periodic h
erogeneity of a tunable form can be mapped into discreten
can be very useful in studying the dynamics of various d
crete systems through our ‘‘inverse’’ transformation. In pa
ticular, considering an intrinsically discrete system stemm
from the physical application of interest, by performing t
above transformation and using some of the freedom tha
allows—see, e.g., the discussion below Eq.~19!—one can
map the discrete system into a heterogeneous one releva
one of the above experiments; then it will be possible to
the available continuum heterogeneous experimental da
understand the features of the discrete system or to moti
new experiments that, by tuning the heterogeneity appro
ately, could provide results and conclusions relevant to
discrete system.

VI. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have used the Poisson formula to exp
itly construct heterogeneous~and thus not translationally in
variant! continuum systems that possess comparable lea
order coherent structure dynamical effects to those in
crete systems. This is a program that can be generally ca
out for systems of gradient type and that aims to capture
the average, the behavior of the patterns of the discrete
tem. This program can equally well be carried out for mo
fied ~heterogeneous! diffusivity or modified ~heterogeneous!
substrate nonlinearity.

The ensuing inverse problem was solved by means
Fourier decomposition and appropriate selection of the F
rier components. The method was shown to work very w
and in full agreement with the theoretical predictions for t
specific example of af4 field theory. Following that, a more
general discussion was presented at the level of pote
energies showing that the discrete system potential en
can always be converted to a continuum one on a heter
neous substrate. The relevant power-law as well as expo
tially small contributions to the functional were also r
vealed. The potential of application of such a transformat
in understanding the dynamics of systems recently stud
theoretically as well as experimentally has also been hi
lighted.

In all of the program presented here, the focus has b
on the ‘‘average’’ properties of the patterns or nonline
waves present in the PDE’s. On the other hand, one m
imagine situations~see, e.g.,@6# for an example! where dis-
creteness and/or heterogeneity may have very delicate ef
~such as the resonances observed in@6#!. In such cases one
may expect that a detailed dynamic picture of the attrac
will be more necessary and that this ‘‘quick’’ effective d
scription may miss some of the relevant phenomenolo
Such a careful study of the limits of this and possibly mo
refined methodologies~such as ones based on the use
4-7
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more ‘‘informed’’ selection ofAnsätze @12#! would clearly
be desirable. In this spirit, we mention the recent work
Fiedler and Vishik on the quantitative homogenization
global attractors in near-gradient reaction-diffusion syste
@33#. Such efforts are in progress and will be reported
future studies.
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